login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = A001952(A137803(n)).
8

%I #16 Aug 03 2022 09:13:02

%S 3,10,17,23,30,37,44,51,58,64,71,75,81,88,95,102,109,116,122,129,136,

%T 143,150,153,160,167,174,180,187,194,201,208,215,221,225,232,238,245,

%U 252,259,266,273,279,286,293,300,303,310,317,324,331,338,344,351,358

%N a(n) = A001952(A137803(n)).

%C This is the third of four sequences that partition the positive integers. See A356056.

%F a(n) = A001952(A137803(n)).

%e (1) u o v = (1, 4, 7, 9, 12, 15, 18, 21, 24, 26, 29, ...) = A356056

%e (2) u o v' = (2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 32, ...) = A356057

%e (3) u' o v = (3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, ...) = A356058

%e (4) u' o v' = (6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 78, ...) = A356059

%t u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)

%t u1 = Complement[Range[Max[u]], u] (* A001952 *)

%t v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)

%t v1 = Complement[Range[Max[v]], v] (* A137804 *)

%t Table[u[[v[[n]]]], {n, 1, z/8}]; (* A356056 *)

%t Table[u[[v1[[n]]]], {n, 1, z/8}]; (* A356057 *)

%t Table[u1[[v[[n]]]], {n, 1, z/8}]; (* A356058 *)

%t Table[u1[[v1[[n]]]], {n, 1, z/8}]; (* A356059 *)

%Y Cf. A001951, A001952, A136803, A137804, A356052 (intersections instead of the results of composition), A356056, A356057, A356059.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Jul 26 2022