login
A356058
a(n) = A001952(A137803(n)).
8
3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, 75, 81, 88, 95, 102, 109, 116, 122, 129, 136, 143, 150, 153, 160, 167, 174, 180, 187, 194, 201, 208, 215, 221, 225, 232, 238, 245, 252, 259, 266, 273, 279, 286, 293, 300, 303, 310, 317, 324, 331, 338, 344, 351, 358
OFFSET
1,1
COMMENTS
This is the third of four sequences that partition the positive integers. See A356056.
FORMULA
a(n) = A001952(A137803(n)).
EXAMPLE
(1) u o v = (1, 4, 7, 9, 12, 15, 18, 21, 24, 26, 29, ...) = A356056
(2) u o v' = (2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 32, ...) = A356057
(3) u' o v = (3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, ...) = A356058
(4) u' o v' = (6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 78, ...) = A356059
MATHEMATICA
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Table[u[[v[[n]]]], {n, 1, z/8}]; (* A356056 *)
Table[u[[v1[[n]]]], {n, 1, z/8}]; (* A356057 *)
Table[u1[[v[[n]]]], {n, 1, z/8}]; (* A356058 *)
Table[u1[[v1[[n]]]], {n, 1, z/8}]; (* A356059 *)
CROSSREFS
Cf. A001951, A001952, A136803, A137804, A356052 (intersections instead of the results of composition), A356056, A356057, A356059.
Sequence in context: A296219 A063293 A270997 * A342280 A024981 A003072
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 26 2022
STATUS
approved