login
A355960
Primes p such that (p+5)^(p-1) == 1 (mod p^2).
6
3, 23, 1574773
OFFSET
1,1
COMMENTS
Equivalently, primes p such that 5^p == p+5 (mod p^2), or Fermat quotient q_p(5) == 1/5 (mod p). - Max Alekseyev, Sep 16 2024
PROG
(PARI) forprime(p=1, , if(Mod(p+5, p^2)^(p-1)==1, print1(p, ", ")))
CROSSREFS
(p+k)^(p-1) == 1 (mod p^2): A355959 (k=2), A355961 (k=6), A355962 (k=7), A355963 (k=8), A355964 (k=9), A355965 (k=10).
Sequence in context: A113577 A224700 A352333 * A264929 A204578 A120085
KEYWORD
nonn,hard,more,bref
AUTHOR
Felix Fröhlich, Jul 21 2022
STATUS
approved