login
A355876
Smallest prime p == 1 (mod 8) such that Q(sqrt(p)) has class number 2n+1.
3
17, 257, 401, 577, 1129, 1297, 13033, 11321, 11257, 38569, 7057, 23593, 27689, 8761, 56857, 284561, 63361, 25601, 24337, 55441, 458929, 14401, 32401, 78401, 70969, 69697, 376897, 106537, 41617, 160001, 193601, 57601, 197137, 367721, 414433, 1506473, 444089, 331777, 156817
OFFSET
0,1
COMMENTS
It seems that a(n) < A355877(n) for most n. a(n) > A355877(n) for n = 0, 1, 6, 9, 15, 20, 35, ...
EXAMPLE
p = 257 is the smallest prime congruent to 1 modulo 8 such that Q(sqrt(p)) has class number 3, so a(1) = 257.
PROG
(PARI) a(n) = forprime(p=2, oo, if(p%8==1 && qfbclassno(p)==2*n+1, return(p)))
CROSSREFS
Cf. A355878.
Similar sequences: A002148 (p == 3 (mod 8)), A355877 (p == 5 (mod 8)), A002146 (p == 7 (mod 8)).
Sequence in context: A098302 A090457 A342481 * A337846 A174408 A260072
KEYWORD
nonn
AUTHOR
Jianing Song, Jul 20 2022
STATUS
approved