login
A355853
Primes in A333369.
1
3, 5, 7, 13, 17, 19, 31, 37, 53, 59, 71, 73, 79, 97, 137, 139, 157, 173, 179, 193, 197, 223, 227, 229, 317, 359, 379, 397, 443, 449, 571, 593, 661, 719, 739, 751, 881, 883, 887, 937, 953, 971, 1009, 1117, 1151, 1171, 1223, 1229, 1447, 1511, 1579, 1597, 1663, 1667, 1669
OFFSET
1,1
EXAMPLE
443 is prime and 443 has two 4's and one 3 in its decimal expansion, hence 443 is a term.
MATHEMATICA
simQ[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; Select[Prime[Range[300]], simQ] (* Amiram Eldar, Jul 19 2022 *)
PROG
(PARI) issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369
isok(m) = isprime(m) && issimber(m); \\ Michel Marcus, Jul 19 2022
(Python)
from itertools import count, islice
from sympy import isprime
def A355853_gen(startvalue=1): # generator of terms
return filter(lambda n:not any((str(n).count(d)^int(d))&1 for d in set(str(n))) and isprime(n), count(max(startvalue, 1)))
A355853_list = list(islice(A355853_gen(), 30)) # Chai Wah Wu, Jul 21 2022
CROSSREFS
Intersection of A000040 and A333369.
Subsequence of A355773.
Supersequence of A155045.
Similar sequences: A002385, A004023.
Sequence in context: A045398 A162565 A321363 * A155045 A144296 A045399
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jul 19 2022
EXTENSIONS
Extended by Michel Marcus, Jul 19 2022
STATUS
approved