login
a(n) = 3*(2*n - 1)*( 3*(2*n - 1)^3 - 1) / 2 for n > 0.
6

%I #11 Feb 16 2025 08:34:03

%S 3,360,2805,10794,29511,65868,128505,227790,375819,586416,875133,

%T 1259250,1757775,2391444,3182721,4155798,5336595,6752760,8433669,

%U 10410426,12715863,15384540,18452745,21958494,25941531,30443328,35507085,41177730,47501919,54528036,62306193,70888230,80327715,90679944,102001941,114352458,127791975

%N a(n) = 3*(2*n - 1)*( 3*(2*n - 1)^3 - 1) / 2 for n > 0.

%C Numbers D > 0 such that A = B^3 + (B+1)^3 = C^3 - D^3 such that the difference C - D == 3 (mod 6), C - D = 3*(2*n - 1) for n > 1, and the difference of the positive cubes C^3 - D^3 is equal to centered cube numbers, with C > D > B > 0, and A > 0, A = 27*t^3 *(27*t^6+1)/4 with t = 2*n-1, and where A = A352759(n), B = A355751(n), C = A355752(n), and D = a(n) (this sequence).

%C There are infinitely many such numbers a(n) = D in this sequence.

%C Subsequence of A352136 and of A352223.

%H Vladimir Pletser, <a href="/A355753/b355753.txt">Table of n, a(n) for n = 1..10000</a>

%H A. Grinstein, <a href="https://web.archive.org/web/20040320144821/http://zadok.org/mattandloraine/1729.html">Ramanujan and 1729</a>, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.

%H Vladimir Pletser, <a href="https://www.researchgate.net/publication/359706361_EULER&#39;S_AND_THE_TAXI_CAB_RELATIONS_AND_OTHER_NUMBERS_THAT_CAN_BE_WRITTEN_TWICE_AS_SUMS_OF_TWO_CUBED_INTEGERS">Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers</a>, submitted. Preprint available on ResearchGate, 2022.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CenteredCubeNumber.html">Centered Cube Number</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F A355752(n)^3 - a(n)^3 = A355751(n)^3 + (A355751(n) + 1)^3 = A352759(n) and A355752(n) - a(n) = 3*(2*n - 1).

%F a(n) = 3*(2*n - 1)*( 3*(2*n - 1)^3 - 1) / 2 for n > 0.

%F For n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 1728*(n - 2), with a(1) = 3, a(2) = 360 and a(3) = 2805.

%F a(n) can be extended for negative n such that a(-n) = a(n+1) + (2n + 1).

%F G.f.: -3*x*(1+115*x+345*x^2+113*x^3+2*x^4) / (x-1)^5 . - _R. J. Mathar_, Aug 03 2022

%e a(1) = 3 belongs to the sequence as 6^3 - 3^3 = 4^3 + 5^3 = 189 and 6 - 3 = 3 = 3*(2*1 - 1).

%e a(2) = 360 belongs to the sequence as 369^3 - 360^3 = 121^3 + 122^3 = 3587409 and 369 - 360 = 9 = 3*(2*2 - 1).

%e a(3) = 3*(2*3 - 1)*( 3*(2*3 - 1)^3 - 1) / 2 = 2805.

%e a(4) = 3*a(3) - 3*a(2) + a(1) + 1728*2 = 3*2805 - 3*360 + 3 + 1728*2 = 10794.

%p restart; for n to 20 do (1/2)* 3*(2*n - 1)*(3*(2*n - 1)^3-1); end do;

%Y Cf. A005898, A001235, A272885, A352133, A352134, A352135, A352136, A352220, A352221, A352222, A352224, A352225, A352755, A352756, A352757, A352759, A352759, A355751, A355752.

%K nonn,easy,changed

%O 1,1

%A _Vladimir Pletser_, Jul 15 2022