login
A355741
Number of ways to choose a sequence of prime factors, one of each prime index of n.
79
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2
OFFSET
1,13
COMMENTS
First differs from A355744 at a(169) = 4, A355744(169) = 3.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
FORMULA
Totally multiplicative with a(prime(k)) = A001221(k).
EXAMPLE
The prime indices of 1131 are {2,6,10}, and the a(1131) = 4 choices are: {2,2,2}, {2,2,5}, {2,3,2}, {2,3,5}.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Times@@PrimeNu/@primeMS[n], {n, 100}]
CROSSREFS
Positions of 0's are A299174.
The version for all divisors is A355731, firsts A355732.
Choosing prime-power divisors gives A355742.
Positions of 1's are A355743.
Counting multisets instead of sequences gives A355744.
The weakly increasing case is A355745, all divisors A355735.
A001414 adds up distinct prime factors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A289509 lists numbers with relatively prime prime indices.
A324850 lists numbers divisible by the product of their prime indices.
Sequence in context: A191261 A355745 A348213 * A355744 A179010 A292262
KEYWORD
nonn,mult
AUTHOR
Gus Wiseman, Jul 18 2022
STATUS
approved