OFFSET
0,2
LINKS
A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
FORMULA
O.g.f: A(x) = ( Sum_{k >= 0} d(k+2)/d(2)*x^k )/( Sum_{k >= 0} d(k+1)/d(1)*x^k ), where d(n) = Product_{k = 1..n} (2*k-1) = A001147(n).
A(x)= 1/(1 + 3*x - 5*x/(1 + 5*x - 7*x/(1 + 7*x - 9*x/(1 + 9*x - ... )))).
The o.g.f. satisfies the Riccati differential equation 2*x^2*A'(x) + 3*x*A(x)^2 - (1 + x)*A(x) + 1 = 0 with A(0) = 1.
Applying Stokes 1982 gives A(x) = 1/(1 - 2*x/(1 - 5*x/(1 - 4*x/(1 - 7*x/(1 - 6*x/(1 - 9*x/(1 - ... - 2*n*x/(1 - (2*n+3)*x )))))))), a continued fraction of Stieltjes type.
MAPLE
n := 2: seq(coeff(series( hypergeom([n+1/2, 1], [], 2*x)/hypergeom([n-1/2, 1], [], 2*x ), x, 21), x, k), k = 0..20);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 15 2022
STATUS
approved