login
A355701
a(n) = Product of prime(k+1) where k runs through the exponents of the positions 2^k of the 1-bits in A354169(n).
1
1, 2, 3, 5, 7, 6, 11, 13, 17, 35, 19, 23, 29, 22, 31, 39, 37, 41, 43, 85, 47, 133, 53, 59, 61, 667, 67, 71, 73, 62, 79, 33, 83, 481, 89, 97, 101, 1763, 103, 107, 109, 235, 113, 119, 127, 1007, 131, 137, 139, 3599, 149, 151, 157, 1541, 163, 2059, 167, 173, 179
OFFSET
0,2
COMMENTS
Compactification of A354169. Offset matches A354169.
LINKS
MATHEMATICA
nn = 58; r = c[_] = 0; m = 1; Array[Set[{a[#], c[#]}, {#, #}] &, 2, 0]; Do[k = SelectFirst[Union@ Map[Total, Rest@ Subsets[2^Reverse[Length[#] - Position[#, 1][[All, 1]]] &@ IntegerDigits[2^(r + 2) - m - 1, 2]]], c[#] == 0 &]; Set[{a[n], c[k]}, {k, n}]; m += a[n]; If[And[IntegerQ[#], # > 0], m -= a[#]] &[n/2]; If[And[EvenQ[k], PrimePowerQ[k], k > 2^r], r++], {n, 2, nn}]; Table[Times @@ Map[Prime, 1 + Length[#] - Position[#, 1][[All, 1]]] &@ IntegerDigits[a[n], 2], {n, 0, nn}] (* Michael De Vlieger, Jul 14 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Jul 14 2022
STATUS
approved