login
A355698
a(n) is the number of repdigits divisors of n (A010785).
2
1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 2, 5, 1, 3, 3, 4, 1, 5, 1, 4, 3, 4, 1, 6, 2, 2, 3, 4, 1, 5, 1, 4, 4, 2, 3, 6, 1, 2, 2, 5, 1, 5, 1, 6, 4, 2, 1, 6, 2, 3, 2, 3, 1, 5, 4, 5, 2, 2, 1, 6, 1, 2, 4, 4, 2, 8, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 4, 4, 1, 5, 3, 2, 1, 6, 2, 2, 2, 8, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 6, 4, 1, 4, 1, 4, 4
OFFSET
1,2
COMMENTS
More than the usual number of terms are displayed in order to show the difference from A087990.
The first 100 terms are the same first 100 terms of A087990, then a(101) = 1 while A087990(101) = 2, because 101 is the smallest palindrome that is not repdigit; the next difference is 121.
Inequalities: 1 <= a(n) <= A087990(n).
LINKS
EXAMPLE
66 has 8 divisors: {1, 2, 3, 6, 11, 22, 33, 66} that are all repdigits, hence a(66) = 8.
121 has 3 divisors: {1, 11, 121} of which 2 are repdigits: {1, 11}, hence a(121) = 2.
MAPLE
isrepdig:= proc(n) nops(convert(convert(n, base, 10), set))=1 end proc:
f:= proc(n) nops(select(isrepdig, numtheory:-divisors(n))) end proc:
map(f, [$1..200]); # Robert Israel, Aug 07 2024
MATHEMATICA
a[n_] := DivisorSum[n, 1 &, Length[Union[IntegerDigits[#]]] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 14 2022 *)
PROG
(Python)
from sympy import divisors
def c(n): return len(set(str(n))) == 1
def a(n): return sum(1 for d in divisors(n, generator=True) if c(d))
print([a(n) for n in range(1, 105)]) # Michael S. Branicky, Jul 14 2022
(PARI) a(n) = my(ret=0, u=1); while(u<=n, ret+=sum(d=1, 9, n%(u*d)==0); u=10*u+1); ret; \\ Kevin Ryde, Jul 14 2022
(PARI) isrep(n) = {1==#Set(digits(n))}; \\ A010785
a(n) = sumdiv(n, d, isrep(d)); \\ Michel Marcus, Jul 15 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jul 14 2022
STATUS
approved