login
A355691
Dirichlet inverse of A320111, number of divisors of n that are not of the form 4k+2.
2
1, -1, -2, -1, -2, 2, -2, 0, 1, 2, -2, 2, -2, 2, 4, 1, -2, -1, -2, 2, 4, 2, -2, 0, 1, 2, 0, 2, -2, -4, -2, 1, 4, 2, 4, -1, -2, 2, 4, 0, -2, -4, -2, 2, -2, 2, -2, -2, 1, -1, 4, 2, -2, 0, 4, 0, 4, 2, -2, -4, -2, 2, -2, 0, 4, -4, -2, 2, 4, -4, -2, 0, -2, 2, -2, 2, 4, -4, -2, -2, 0, 2, -2, -4, 4, 2, 4, 0, -2, 2, 4, 2, 4, 2, 4, -2, -2, -1, -2, -1, -2, -4, -2, 0, -8
OFFSET
1,3
COMMENTS
Multiplicative because A320111 is.
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A320111(n/d) * a(d).
Multiplicative with a(2^e) = A010892(e+2) and for a prime p > 2, a(p) = -2, a(p^2) = 1 and a(p^e) = 0 when e > 2. - Sebastian Karlsson, Oct 21 2022
Dirichlet g.f.: 4^s/(zeta(s)^2*(1 - 2^s + 4^s)). - Amiram Eldar, Dec 30 2022
MATHEMATICA
f[2, e_] := Switch[Mod[e, 6], 0, 0, 1, -1, 2, -1, 3, 0, 4, 1, 5, 1]; f[p_, 1] = -2; f[p_, 2] = 1; f[p_, e_] := 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 30 2022 *)
PROG
(PARI)
A320111(n) = sumdiv(n, d, (2!=(d%4)));
memoA355691 = Map();
A355691(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355691, n, &v), v, v = -sumdiv(n, d, if(d<n, A320111(n/d)*A355691(d), 0)); mapput(memoA355691, n, v); (v)));
CROSSREFS
Cf. A320111.
Cf. also A355690.
Cf. A010892.
Sequence in context: A171683 A249130 A134997 * A337474 A104605 A300953
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Jul 15 2022
STATUS
approved