OFFSET
1,2
COMMENTS
a(n) and R(a(n)) have the same number of digits.
Petr Beckmann wrote that the fraction 92/29, corresponding to the second term of the sequence, appeared as value of Pi in a document written in A.D. 718.
REFERENCES
Petr Beckmann, A History of Pi, 3rd Ed., Boulder, Colorado: The Golem Press (1974): p. 27.
LINKS
Bert Dobbelaere, Table of n, a(n) for n = 1..22
EXAMPLE
n fraction approximated value
- ------------------- ------------------
1 1 1
2 92/29 3.1724137931034...
3 581/185 3.1405405405405...
4 5471/1745 3.1352435530086...
5 52861/16825 3.1418127786033...
6 998713/317899 3.1416047235128...
7 7774742/2474777 3.1415929596889...
8 93630892/29803639 3.1415926088757...
9 422334431/134433224 3.1415926690860...
...
MATHEMATICA
nmax=9; a={}; For[n=1, n<=nmax, n++, minim=Infinity; For[k=10^(n-1), k<=10^n-1, k++, If[(dist=Abs[k/FromDigits[Reverse[IntegerDigits[k]]]-Pi]) < minim && Last[IntegerDigits[k]]!=0 && GCD[k, FromDigits[Reverse[IntegerDigits[k]]]]==1, minim=dist; kmin=k]]; AppendTo[a, kmin]]; a
CROSSREFS
KEYWORD
nonn,base,frac
AUTHOR
Stefano Spezia, Jul 10 2022
EXTENSIONS
a(10)-a(19) from Bert Dobbelaere, Jul 17 2022
a(20)-a(21) from Bert Dobbelaere, Sep 05 2022
STATUS
approved