login
A355613
Number of n-tuples (p_1, p_2, ..., p_n) of positive integers such that p_{i-1} <= p_i <= i^n.
2
1, 1, 4, 188, 249776, 16633660072, 83928799192724928, 45137673586198237802064960, 3471414431114929157135319840692727552, 49384542120790045258798151330072200190915129956928, 163311862970149172566335309591606099705654956202533457675827916800
OFFSET
0,3
LINKS
EXAMPLE
a(2) = 4: (1,1), (1,2), (1,3), (1,4).
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, add(
b(j-1, k)*(-1)^(n-j)*binomial(j^k, n-j+1), j=1..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..10);
CROSSREFS
Main diagonal of A355614.
Sequence in context: A266492 A285882 A208184 * A172809 A123116 A163839
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 09 2022
STATUS
approved