login
A355577
Primes p such that 5*p+6, 5*p+12, 5*p+18 and 5*p+24 are all primes.
1
7, 11, 127, 347, 659, 1019, 2689, 4663, 4817, 5233, 8387, 13997, 18257, 19051, 19181, 23909, 24109, 28211, 34483, 38287, 39761, 41203, 44647, 45767, 51829, 57089, 64019, 70207, 72671, 73091, 96821, 100237, 101021, 101119, 102607, 102967, 104231, 120779, 121171, 126851, 127541, 130547, 135727
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 127 is a term because 127, 5*127+6 = 641, 5*p+12 = 647, 5*p+18 = 653 and 5*p+24 = 659 are all prime.
MAPLE
select(p -> andmap(isprime, [p, 5*p+6, 5*p+12, 5*p+18, 5*p+24]), [seq(i, i=3..200000, 2)]);
MATHEMATICA
Select[Prime[Range[13000]], And @@ PrimeQ[5*# + 6*Range[4]] &] (* Amiram Eldar, Jul 08 2022 *)
CROSSREFS
Sequence in context: A107187 A132958 A371485 * A241189 A057737 A130704
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jul 08 2022
STATUS
approved