login
A355566
T(j,k) are the numerators u in the representation R = s/t + (2/Pi)*u/v of the resistance between two nodes separated by the distance vector (j,k) in an infinite square lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= j, is a triangle read by rows.
7
0, 0, 1, -2, 2, 4, -12, 23, 2, 23, -184, 40, -118, 12, 176, -940, 3323, -1118, 499, 20, 563, -24526, 1234, -18412, 13462, -626, 118, 6508, -130424, 721937, -71230, 327143, -1312, 14369, 262, 88069, -4924064, 191776, -6601046, 2395676, -888568, 131972, -300766, 1624, 91072
OFFSET
0,4
COMMENTS
See A355565 for more information.
On the diagonal we have T(0,0) = 0 and T(n,n) = A350669(n-1) for n > 0. - Rainer Rosenthal, Aug 01 2022
REFERENCES
See A211074 for references and links.
LINKS
Rainer Rosenthal, Table of n, a(n) for n = 0..135, rows 0..15 of triangle, flattened.
EXAMPLE
The triangle begins:
0;
0, 1;
-2, 2, 4;
-12, 23, 2, 23;
-184, 40, -118, 12, 176;
-940, 3323, -1118, 499, 20, 563;
-24526, 1234, -18412, 13462, -626, 118, 6508;
PROG
(PARI) \\ uses function R(m, p, x) given in A355565
for (j=0, 8, for (k=0, j, my(q=(pi/2)*R(j, k)); print1(numerator(polcoef(q, 0, pi)), ", ")); print())
CROSSREFS
A355567 are the corresponding denominators v.
A355565 and A131406 (with changed offset) are s and t.
Cf. A350669.
Sequence in context: A134720 A019225 A002840 * A298477 A253677 A182894
KEYWORD
tabl,frac,sign
AUTHOR
Hugo Pfoertner, Jul 07 2022
STATUS
approved