login
A355225
Number of partitions of n that contain more prime parts than nonprime parts.
2
0, 0, 1, 1, 1, 3, 3, 5, 7, 9, 14, 19, 23, 34, 46, 56, 77, 99, 126, 164, 208, 260, 336, 416, 520, 654, 809, 995, 1237, 1514, 1856, 2274, 2761, 3354, 4078, 4918, 5931, 7153, 8572, 10272, 12298, 14663, 17469, 20787, 24643, 29210, 34568, 40797, 48113, 56664, 66573
OFFSET
0,6
FORMULA
a(n) = A000041(n) - A155515(n) - A355158(n).
a(n) = A355306(n) - A355158(n).
EXAMPLE
For n = 8 the partitions of 8 that contain more prime parts than nonprime parts are [5, 3], [3, 3, 2], [4, 2, 2], [2, 2, 2, 2], [5, 2, 1], [3, 2, 2, 1], [2, 2, 2, 1, 1]. There are seven of these partitions so a(8) = 7.
PROG
(PARI) a(n) = my(nb=0); forpart(p=n, if (#select(isprime, Vec(p)) > #p/2, nb++)); nb; \\ Michel Marcus, Jun 25 2022
(Python)
from sympy import isprime
from sympy.utilities.iterables import partitions
def c(p): return 2*sum(p[i] for i in p if isprime(i)) > sum(p.values())
def a(n): return sum(1 for p in partitions(n) if c(p))
print([a(n) for n in range(51)]) # Michael S. Branicky, Jun 28 2022
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jun 24 2022
EXTENSIONS
More terms from Alois P. Heinz, Jun 24 2022
STATUS
approved