login
A355217
E.g.f. A(x) satisfies A'(x) = 1 + A(2 * (1 - exp(-x)))/2.
2
1, 1, 1, -1, -19, -153, -1155, -9785, -183075, -25013497, -11301739395, -10911778097209, -21604455470794723, -86776403662147521913, -702894028759616525605187, -11441974451382622345470900921, -373552937787342469475481963377571
OFFSET
1,5
LINKS
FORMULA
a(1) = 1; a(n+1) = Sum_{k=1..n} (-1)^(n-k) * 2^(k-1) * Stirling2(n,k) * a(k).
PROG
(PARI) a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=sum(j=1, i, (-1)^(i-j)*2^(j-1)*stirling(i, j, 2)*v[j])); v;
CROSSREFS
Sequence in context: A160431 A010825 A022711 * A254142 A107891 A302352
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 24 2022
STATUS
approved