login
A355138
The products of consecutive terms in A355061.
3
2, 12, 90, 525, 490, 84, 198, 1815, 550, 60, 126, 735, 350, 120, 252, 1617, 1694, 132, 234, 2535, 650, 140, 294, 315, 150, 220, 726, 495, 300, 280, 882, 945, 600, 560, 1078, 2541, 396, 168, 1274, 3549, 468, 240, 700, 2205, 378, 156, 1690, 975, 180, 264, 1210, 825, 270, 504, 980, 1575, 540, 312
OFFSET
1,1
COMMENTS
See A355061 for further details.
PROG
(Python)
from sympy import primefactors
from itertools import count, islice
def agen(): # generator of terms
an1, an, f1, f, pset = 2, 6, {2}, {2, 3}, {2, 12}
yield from [2, 12]
for n in count(4):
an2, an1, an, f2, f1 = an1, an, 6, f1, f
f = set(primefactors(an))
while an*an1 in pset or f1&f == set() or f2&f != set() or f <= f1:
an += 1; f = set(primefactors(an))
pset.add(an*an1); yield an*an1
print(list(islice(agen(), 58))) # Michael S. Branicky, Jun 20 2022
CROSSREFS
Sequence in context: A079858 A224152 A174356 * A121357 A098926 A074610
KEYWORD
nonn
AUTHOR
Scott R. Shannon, Jun 20 2022
STATUS
approved