login
A355107
E.g.f. A(x) satisfies: A(x) = 1 + 3 * x * A(-log(1-x)).
2
1, 3, 18, 189, 2988, 65070, 1845666, 65593773, 2838648888, 146342004696, 8832171768840, 615243982098438, 48886929048261636, 4387169287407671856, 440884788552635315490, 49250783623005351369405, 6076420246639538049330288, 823299493223605468234344696
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = 3 * n * Sum_{k=0..n-1} |Stirling1(n-1,k)| * a(k).
a(n) = 3 * n * A355099(n-1) for n>0.
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=3*i*sum(j=0, i-1, abs(stirling(i-1, j, 1))*v[j+1])); v;
CROSSREFS
Cf. A355099.
Sequence in context: A033030 A279843 A355101 * A178014 A258659 A363414
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 19 2022
STATUS
approved