login
E.g.f. A(x) satisfies A(x) = 1 + 2 * x * A(exp(x) - 1).
3

%I #11 Jun 19 2022 08:40:37

%S 1,2,8,60,688,11060,234744,6314196,208825376,8296326612,388694773720,

%T 21155834296476,1321107368127408,93662776272057356,

%U 7471576015922028248,665418775120254506940,65714704859545872003008,7153378915302503698953860

%N E.g.f. A(x) satisfies A(x) = 1 + 2 * x * A(exp(x) - 1).

%F a(0) = 1; a(n) = 2 * n * Sum_{k=0..n-1} Stirling2(n-1,k) * a(k).

%F a(n) = 2 * n * A355083(n-1) for n>0.

%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=2*i*sum(j=0, i-1, stirling(i-1, j, 2)*v[j+1])); v;

%Y Cf. A048801, A355101.

%Y Cf. A355083.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Jun 19 2022