login
A355100
E.g.f. A(x) satisfies A(x) = 1 + 2 * x * A(exp(x) - 1).
3
1, 2, 8, 60, 688, 11060, 234744, 6314196, 208825376, 8296326612, 388694773720, 21155834296476, 1321107368127408, 93662776272057356, 7471576015922028248, 665418775120254506940, 65714704859545872003008, 7153378915302503698953860
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = 2 * n * Sum_{k=0..n-1} Stirling2(n-1,k) * a(k).
a(n) = 2 * n * A355083(n-1) for n>0.
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=2*i*sum(j=0, i-1, stirling(i-1, j, 2)*v[j+1])); v;
CROSSREFS
Cf. A355083.
Sequence in context: A303672 A303062 A001188 * A303532 A355106 A113145
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 19 2022
STATUS
approved