login
A355099
E.g.f. A(x) satisfies A(x) = 1 - 3 * log(1-x) * A(-log(1-x)).
2
1, 3, 21, 249, 4338, 102537, 3123513, 118277037, 5420074248, 294405725628, 18643757033286, 1357970251340601, 112491520189940304, 10497256870300840845, 1094461858289007808209, 126592088471657042694381, 16143127318109911141849896, 2257107645258692949884188932
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies: A(1 - exp(-x)) = 1 + 3*x*A(x).
a(0) = 1; a(n) = 3 * Sum_{k=1..n} k * |Stirling1(n,k)| * a(k-1).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=3*sum(j=1, i, j*abs(stirling(i, j, 1))*v[j])); v;
CROSSREFS
Cf. A355107.
Sequence in context: A355092 A205319 A377790 * A209917 A179504 A197716
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 19 2022
STATUS
approved