login
A355098
E.g.f. A(x) satisfies A(x) = 1 - 2 * log(1-x) * A(-log(1-x)).
4
1, 2, 10, 88, 1164, 21228, 505108, 15088400, 549924048, 23922798360, 1220592387496, 72008007861128, 4853864641010384, 370112914857814360, 31651011896528812776, 3013092750843813488640, 317232128940068230592960, 36726669357239166496674080
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies: A(1 - exp(-x)) = 1 + 2*x*A(x).
a(0) = 1; a(n) = 2 * Sum_{k=1..n} k * |Stirling1(n,k)| * a(k-1).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=2*sum(j=1, i, j*abs(stirling(i, j, 1))*v[j])); v;
CROSSREFS
Cf. A355106.
Sequence in context: A186448 A377789 A144002 * A209884 A060350 A270923
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 19 2022
STATUS
approved