login
A355093
E.g.f. A(x) satisfies A(x) = 1 + 2 * (1 - exp(-x)) * A(1 - exp(-x)).
4
1, 2, 6, 14, -50, -838, 1730, 136530, -486826, -53845210, 608573414, 39761626434, -1250658124134, -39125693738246, 3470290682698798, 1980500546819286, -11592469556319388642, 475984934077375262394, 35772633977318034763762
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies: A(-log(1-x)) = 1 + 2*x*A(x).
a(0) = 1; a(n) = 2 * Sum_{k=1..n} (-1)^(n-k) * k * Stirling2(n,k) * a(k-1).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=2*sum(j=1, i, (-1)^(i-j)*j*stirling(i, j, 2)*v[j])); v;
CROSSREFS
Cf. A355102.
Sequence in context: A011455 A188491 A364677 * A376075 A295974 A324365
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 19 2022
STATUS
approved