login
G.f.: Sum_{n>=0} a(n)*x^n/(n!*3^(n*(n-1)/2)) = exp( Sum_{n>=1} x^n/(n!*3^(n*(n-1)/2)) ).
2

%I #14 Jun 18 2022 14:00:04

%S 1,1,4,55,2539,383860,187659181,293630900689,1459799672901004,

%T 22924423319469919651,1131844225175191511724871,

%U 175015470856131731421651730600,84480805958219938739735661779357401,126948830401157131161305967764668449231937

%N G.f.: Sum_{n>=0} a(n)*x^n/(n!*3^(n*(n-1)/2)) = exp( Sum_{n>=1} x^n/(n!*3^(n*(n-1)/2)) ).

%o (PARI) a(n) = n!*3^(n*(n-1)/2)*polcoef(exp(sum(k=1, n, x^k/(k!*3^(k*(k-1)/2)))+x*O(x^n)), n);

%o (PARI) T(n, k) = if(k==1, 1, sum(j=1, n-1, 3^(j*(n-j))*binomial(n-1, j)*T(j, k-1)));

%o a(n) = if(n==0, 1, sum(k=1, n, T(n, k)));

%Y Cf. A000110, A240936, A355074.

%Y Cf. A355070, A355081.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Jun 18 2022