OFFSET
5,1
COMMENTS
Multidimensional polyominoes are connected sets of cells of regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). Each member of a chiral pair is a reflection but not a rotation of the other.
LINKS
Robert A. Russell, Table of n, a(n) for n = 5..100
W. F. Lunnon, Counting multidimensional polyominoes. Computer Journal 18 (1975), no. 4, pp. 366-367.
Robert A. Russell, Trunk Generating Functions
FORMULA
G.f.: (12 C(x)^4 + 87 C(x)^5 + 50 C(x)^6 + 3 C(x)^7 + 18 C(x)^3 C(-x^2) + 36 C(x)^4 C(-x^2) + 6 C(x)^5 C(-x^2) - 12 C(-x^2)^2 - 27 C(x) C(-x^2)^2 - 6 C(x)^2 C(-x^2)^2 + 3 C(x)^3 C(-x^2)^2 - 16 C(-x^2)^3 - 6 C(x) C(-x^2)^3 + 4 C(x^3)^2 - 6 C(x) C(-x^4) - 6 C(x) C(-x^2) C(-x^4) + 4 C(-x^6)) / 24 + C(x)^2 (16 C(x)^3 + 159 C(x)^4 + 112 C(x)^5 + 9 C(x)^6 + 14 C(x)^2 C(-x^2) + 32 C(x)^3 C(-x^2) + 10 C(x)^4 C(-x^2) - C(-x^2)^2 + C(x)^2 C(-x^2)^2) / (8 (1-C(x))) + C(x)^5 (2 C(x) + 67 C(x)^2 + 46 C(x)^3 + 6 C(x)^4 + 3 C(-x^2) + 6 C(x) C(-x^2) + 2 C(x)^2 C(-x^2)) / (2 (1-C(x))^2) - C(-x^2) (2 C(x)^2 C(-x^2) + 7 C(-x^2)^2 + 17 C(x) C(-x^2)^2 + 2 C(x)^2 C(-x^2)^2 + 7 C(-x^2)^3 + 5 C(x) C(-x^2)^3 + C(-x^4) + C(x) C(-x^4) + C(-x^2) C(-x^4) + C(x) C(-x^2) C(-x^4)) / (4 (1-C(-x^2))) + C(x)^6 (4 C(x) + 153 C(x)^2 + 75 C(x)^3 + 12 C(x)^4 + 3 C(-x^2) + 3 C(x) C(-x^2)) / (6 (1-C(x))^3) - C(x)^2 C(-x^2)^2 (C(x) + C(-x^2)) / ((1-C(x)) (1-C(-x^2))) + (C(x) C(x^3)^2) / (3 (1-C(x^3))) + C(x)^9 (21 + 4 C(x)) / (2 (1-C(x))^4) - C(-x^2)^4 (6 + 7 C(x) + 2 C(-x^2) + 2 C(x) C(-x^2)) / (2 (1-C(-x^2))^2) + 3 C(x)^10 / (2 (1-C(x))^5) - C(x)^2 C(-x^2)^4 / (2 (1-C(x)) (1-C(-x^2))^2) - (1 + C(x)) C(-x^2)^5 / (1-C(-x^2))^3 where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled in A045648.
EXAMPLE
a(5)=6 because there are 6 chiral pairs of pentominoes in 2-space.
MATHEMATICA
sc[n_, k_] := sc[n, k] = c[n+1-k, 1] + If[n<2k, 0, sc[n-k, k](-1)^k];
c[1, 1] := 1; c[n_, 1] := c[n, 1] = Sum[c[i, 1] sc[n-1, i]i, {i, 1, n-1}]/(n-1);
c[n_, k_] := c[n, k] = Sum[c[i, 1] c[n-i, k-1], {i, 1, n-1}];
nmax = 30; K[x_] := Sum[c[i, 1] x^i, {i, 0, nmax}]
Drop[CoefficientList[Series[(12 K[x]^4 + 87 K[x]^5 + 50 K[x]^6 + 3 K[x]^7 + 18 K[x]^3 K[-x^2] + 36 K[x]^4 K[-x^2] + 6 K[x]^5 K[-x^2] - 12 K[-x^2]^2 - 27 K[x] K[-x^2]^2 - 6 K[x]^2 K[-x^2]^2 + 3 K[x]^3 K[-x^2]^2 - 16 K[-x^2]^3 - 6 K[x] K[-x^2]^3 + 4 K[x^3]^2 - 6 K[x] K[-x^4] - 6 K[x] K[-x^2] K[-x^4] + 4 K[-x^6]) / 24 + K[x]^2 (16 K[x]^3 + 159 K[x]^4 + 112 K[x]^5 + 9 K[x]^6 + 14 K[x]^2 K[-x^2] + 32 K[x]^3 K[-x^2] + 10 K[x]^4 K[-x^2] - K[-x^2]^2 + K[x]^2 K[-x^2]^2) / (8 (1-K[x])) + K[x]^5 (2 K[x] + 67 K[x]^2 + 46 K[x]^3 + 6 K[x]^4 + 3 K[-x^2] + 6 K[x] K[-x^2] + 2 K[x]^2 K[-x^2]) / (2 (1-K[x])^2) - K[-x^2] (2 K[x]^2 K[-x^2] + 7 K[-x^2]^2 + 17 K[x] K[-x^2]^2 + 2 K[x]^2 K[-x^2]^2 + 7 K[-x^2]^3 + 5 K[x] K[-x^2]^3 + K[-x^4] + K[x] K[-x^4] + K[-x^2] K[-x^4] + K[x] K[-x^2] K[-x^4]) / (4 (1-K[-x^2])) + K[x]^6 (4 K[x] + 153 K[x]^2 + 75 K[x]^3 + 12 K[x]^4 + 3 K[-x^2] + 3 K[x] K[-x^2]) / (6 (1-K[x])^3) - K[x]^2 K[-x^2]^2 (K[x] + K[-x^2]) / ((1-K[x]) (1-K[-x^2])) + (K[x] K[x^3]^2) / (3 (1-K[x^3])) + K[x]^9 (21 + 4 K[x]) / (2 (1-K[x])^4) - K[-x^2]^4 (6 + 7 K[x] + 2 K[-x^2] + 2 K[x] K[-x^2]) / (2 (1-K[-x^2])^2) + 3 K[x]^10 / (2 (1-K[x])^5) - K[x]^2 K[-x^2]^4 / (2 (1-K[x]) (1-K[-x^2])^2) - (1 + K[x]) K[-x^2]^5 / (1-K[-x^2])^3, {x, 0, nmax}], x], 5]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jun 16 2022
STATUS
approved