login
A354980
a(n) = Sum_{k=0..n} |Stirling1(k + n, n)|, row sums of A354979.
1
1, 2, 15, 267, 7600, 293925, 14309743, 838738740, 57454922915, 4502651972249, 397234757906030, 38956074787666025, 4203685743662913937, 494961608467205567662, 63146302129222660054495, 8676907380290993545719955, 1277582548576381271300740092, 200667260023390039020841648045
OFFSET
0,2
FORMULA
a(n) ~ 2^(3*n-1) * c^(2*n) * n^(n - 1/2) / (sqrt(Pi*(c-1)) * (2*c-1)^n * exp(n)), where c = -LambertW(-1,-exp(-1/2)/2) = 1.7564312086261696769827376166... - Vaclav Kotesovec, Jun 15 2022
MATHEMATICA
Table[Sum[Abs@StirlingS1[k + n, n], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 15 2022 *)
CROSSREFS
Sequence in context: A264907 A195737 A192567 * A143886 A174482 A076111
KEYWORD
nonn
AUTHOR
Peter Luschny, Jun 15 2022
STATUS
approved