login
A354948
Square array read by upwards antidiagonals: T(n,k) = k-th digit after the radix point in the expansion of 1/n in golden ratio base phi where n and k both >= 1 and phi = (1+sqrt(5))/2.
0
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1
OFFSET
1
COMMENTS
First row : since 1/1 has all zeros after radix. T(1, k) = 0 for k >= 1.
First column: since 1/phi > 1/n for n>=2; T(n, 1) = 0 for all n >= 1.
EXAMPLE
Array begins:
k=1 2 3 4 5 6 7 8
n=1: 0, 0, 0, 0, 0, 0, 0, 0,
n=2: 0, 1, 0, 0, 1, 0, 0, 1,
n=3: 0, 0, 1, 0, 1, 0, 0, 0,
n=4: 0, 0, 1, 0, 0, 0, 0, 0,
n=5: 0, 0, 0, 1, 0, 0, 1, 0,
n=6: 0, 0, 0, 1, 0, 0, 0, 0,
n=7: 0, 0, 0, 0, 1, 0, 1, 0,
n=8: 0, 0, 0, 0, 1, 0, 1, 0,
Row n=6 is 1/6 = .0001000010101001... in base phi.
PROG
(PARI)
phi = quadgen(5);
T(n, k) = {
if (n == 1, 0,
my (t = 1/n, d = 0);
for (i=1, k,
t = t * phi;
t -= (d = t >= 1));
d)};
CROSSREFS
Cf. A355202 (binary).
Sequence in context: A023971 A185014 A369036 * A330551 A346618 A079260
KEYWORD
base,nonn,tabl
AUTHOR
STATUS
approved