login
A354835
Numbers k such that the k-th and (k+1)st Stieltjes constants have opposite signs.
3
0, 2, 5, 9, 12, 16, 21, 25, 30, 35, 40, 45, 50, 56, 62, 67, 73, 79, 85, 91, 97, 104, 110, 117, 123, 130, 136, 143, 150, 157, 164, 171, 178, 185, 192, 200, 207, 214, 222, 229, 237, 244, 252, 259, 267, 275, 282, 290, 298, 306, 314, 322, 330, 338, 346, 354, 362, 370, 378, 386, 395
OFFSET
1,2
COMMENTS
Stieltjes constants change sign between StieltjesGamma(k) and StieltjesGamma(k+1).
FORMULA
a(n) = -1 + Sum_{i=0..n-1} A114524(i).
EXAMPLE
0 is a term because StieltjesGamma(0) = 0.577216 (positive) and StieltjesGamma(1) = -0.0728158 (negative).
5 is a term because StieltjesGamma(5) = 0.000793 (positive) and StieltjesGamma(6) = -0.0002387 (negative).
MATHEMATICA
aa = {}; Do[If[Sign[StieltjesGamma[n]] != Sign[StieltjesGamma[n + 1]], AppendTo[aa, n]], {n, 0, 755}]; aa
CROSSREFS
Sequence in context: A086814 A211274 A276217 * A086343 A056549 A034806
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jun 07 2022
STATUS
approved