login
A354806
Parity of Dirichlet inverse of {A003415, arithmetic derivative of n + A063524 (1, 0, 0, 0, ...)}.
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1
OFFSET
1
FORMULA
a(n) = A000035(A346241(n)).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
memoA346241 = Map();
A346241(n) = if(1==n, 1, my(v); if(mapisdefined(memoA346241, n, &v), v, v = -sumdiv(n, d, if(d<n, A003415(n/d)*A346241(d), 0)); mapput(memoA346241, n, v); (v)));
A354806(n) = (A346241(n)%2);
CROSSREFS
Cf. A000035, A003415, A346241, A354807, A354818 (positions of 0's).
Sequence in context: A106667 A133011 A296079 * A340363 A340372 A167850
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 08 2022
STATUS
approved