login
A354783
If the binary expansion of A354757(n) is 1 d_1 d_2 ... d_k, then the binary expansion of a(n) is c_1 c_2 ... c_k, where c_i = 1 - d_i.
3
0, 0, 1, 1, 3, 0, 4, 4, 12, 0, 3, 3, 19, 2, 34, 0, 64, 64, 76, 8, 136, 0, 256, 256, 768, 0, 17, 17, 1041, 16, 50, 32, 2080, 0, 4096, 4096, 12288, 0, 68, 68, 16452, 64, 200, 128, 32896, 0, 65536, 65536, 196608, 0, 768, 768, 262912, 512, 524800, 0, 1048576, 1048576, 1049601, 1024, 2098176, 0, 18, 18, 4194322, 16, 2096, 2048, 8390656, 0, 16777216
OFFSET
1,5
COMMENTS
Has the same relation to A354757 as A354781 does to A354780.
The offset is 1, to avoid having to define a(0).
LINKS
EXAMPLE
A354757(5) = 12 = 1100_2, so a(5) = 11_2 = 3.
A354757(6) = 15 = 1111_2, so a(6) = 0.
A354757(7) = 27 = 11011_2, so a(7) = 100_2 = 4.
CROSSREFS
See A354793 for Hamming weight of a(n).
Sequence in context: A016644 A240966 A308109 * A209132 A019789 A137335
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Jul 08 2022
EXTENSIONS
Added comment and examples. - N. J. A. Sloane, Aug 02 2022
STATUS
approved