login
A354519
Expansion of e.g.f. exp(x) * log(sec(x)).
3
0, 1, 3, 8, 20, 61, 203, 888, 4080, 24001, 140283, 1028048, 7248020, 63374221, 522164243, 5299033488, 49924707840, 576514338721, 6110861416083, 79100066353208, 931434877343540, 13355627237749501, 172948115797623803, 2720827878727067208, 38424408320191299120
OFFSET
1,3
FORMULA
a(n) = Sum_{k=1..floor(n/2)} A000182(k) * binomial(n,2*k).
a(n) ~ 2^(n + 1/2) * (exp(Pi/2) + (-1)^n/exp(Pi/2)) * n^(n - 1/2) / (Pi^(n - 1/2) * exp(n)). - Vaclav Kotesovec, Aug 17 2022
PROG
(PARI) my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(exp(x)*log(1/cos(x)))))
(PARI) a(n) = sum(k=1, n\2, ((-4)^k-(-16)^k)*bernfrac(2*k)/(2*k)*binomial(n, 2*k));
(Python)
from math import comb
from sympy import bernoulli
def A354519(n): return sum(abs(((2-(2<<(m:=k<<1)))*bernoulli(m)<<m-2)//k)*comb(n, k<<1) for k in range(1, (n>>1)+1)) # Chai Wah Wu, Apr 15 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 16 2022
STATUS
approved