%I #10 Aug 16 2022 05:14:37
%S 2,14,264,21512,5663596,6478476233,23432328776346,365121393771314359,
%T 18039965927005597824652,3847346539490622663060402802,
%U 2604549807872636495439504536518768,7613280873970130888072912524910312775000,70659728324509466176595292882340210105184200002
%N Number of SAWs crossing a square domain of the hexagonal lattice.
%H Anthony J. Guttmann, <a href="/A354511/b354511.txt">Table of n, a(n) for n = 1..24</a>
%H Anthony J. Guttmann and Iwan Jensen, <a href="https://arxiv.org/abs/2208.06744">Self-avoiding walks and polygons crossing a domain on the square and hexagonal lattices</a>, arXiv:2208.06744 [math-ph], Aug 13 2022, Table D10.
%Y Cf. A001006, A002026, A007764, A116485.
%K nonn
%O 1,1
%A _Vaclav Kotesovec_, Aug 16 2022