login
A354510
Primes of the form p+q^2+r where p,q,r are three consecutive members of A007528.
1
13007, 28211, 36857, 39227, 86441, 272507, 345731, 459671, 467867, 553529, 599087, 746507, 777911, 788561, 910127, 1354901, 1425653, 1512923, 1587587, 1710869, 2039171, 2509061, 2624411, 3196913, 3617597, 3896657, 4161611, 4260077, 4359749, 4460549, 4536893, 4639757, 5171093, 5280791, 5673911, 5963351
OFFSET
1,1
COMMENTS
Primes of the form p+q^2+r where p, q and r are consecutive members of the sequence of primes of the form 6*k-1.
All terms == 5 (mod 6).
LINKS
EXAMPLE
a(3) = 36857 is in the sequence because 36857 = 179 + 191^2 + 197 and 179 = A007528(21), 191 = A007528(22) and 197 = A007528(23).
MAPLE
q:= 5: r:= 11: count:= 0: R:= NULL:
while count < 40 do
p:= q; q:= r;
do r:= r+6 until isprime(r);
if isprime(p+q^2+r) then count:= count+1; R:= R, p+q^2+r fi
od:
R;
MATHEMATICA
Select[#[[1]] + #[[2]]^2 + #[[3]] & /@ Partition[Select[Prime[Range[400]], Mod[#1, 6] == 5 &], 3, 1], PrimeQ] (* Amiram Eldar, Aug 16 2022 *)
CROSSREFS
Cf. A007528.
Sequence in context: A238142 A190947 A203910 * A138762 A139777 A031633
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Aug 16 2022
STATUS
approved