The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A354466 Numbers k such that the decimal expansion of the sum of the reciprocals of the digits of k starts with the digits of k in the same order. 1
 1, 13, 145, 153, 1825, 15789, 16666, 21583, 216666, 2416666, 28428571, 265833333, 3194444444, 3333333333, 9111111111, 35333333333, 3166666666666, 3819444444444, 26666666666666, 34166666666666, 527857142857142, 3944444444444444, 6135714285714285, 615833333333333333 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The sequence is infinite because all numbers of the form 10^(10^n-6) + 6*(10^(10^n-6)-1)/9, (n>0) are terms. All terms are zeroless since 1/0 is undefined. If n gives a sum < 1 then that sum is taken as 0.xyz.. but n does not start with 0, so not a term. LINKS Kevin Ryde, Table of n, a(n) for n = 1..382 Michael S. Branicky, Python program Kevin Ryde, PARI/GP Code EXAMPLE 28428571 is a term because 1/2 + 1/8 + 1/4 + 1/2 + 1/8 + 1/5 + 1/7 + 1/1 = 2.8428571... 825 is not a term since 1/8 + 1/2 + 1/5 = 0.825. MATHEMATICA Do[If[FreeQ[IntegerDigits[n], 0]&&Floor[Total[1/IntegerDigits[n]]*10^(IntegerLength[n]-IntegerLength[Floor[Total[1/IntegerDigits[n]]]])]==n&&Floor[Total[1/IntegerDigits[n]]]>0, Print[n]], {n, 1, 216666}] PROG (Python) See links. (PARI) See links. CROSSREFS Cf. A009994, A034708, A337904. Sequence in context: A134489 A064525 A065411 * A038492 A270579 A297223 Adjacent sequences: A354463 A354464 A354465 * A354467 A354468 A354469 KEYWORD nonn,base AUTHOR Metin Sariyar, Jun 01 2022 EXTENSIONS a(12)-a(24) from Michael S. Branicky, Jun 03 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 00:04 EST 2023. Contains 360082 sequences. (Running on oeis4.)