login
A354466
Numbers k such that the decimal expansion of the sum of the reciprocals of the digits of k starts with the digits of k in the same order.
1
1, 13, 145, 153, 1825, 15789, 16666, 21583, 216666, 2416666, 28428571, 265833333, 3194444444, 3333333333, 9111111111, 35333333333, 3166666666666, 3819444444444, 26666666666666, 34166666666666, 527857142857142, 3944444444444444, 6135714285714285, 615833333333333333
OFFSET
1,2
COMMENTS
The sequence is infinite because all numbers of the form 10^(10^n-6) + 6*(10^(10^n-6)-1)/9, (n>0) are terms.
All terms are zeroless since 1/0 is undefined.
If n gives a sum < 1 then that sum is taken as 0.xyz.. but n does not start with 0, so not a term.
LINKS
Michael S. Branicky, Python program
Kevin Ryde, PARI/GP Code
EXAMPLE
28428571 is a term because 1/2 + 1/8 + 1/4 + 1/2 + 1/8 + 1/5 + 1/7 + 1/1 = 2.8428571...
825 is not a term since 1/8 + 1/2 + 1/5 = 0.825.
MATHEMATICA
Do[If[FreeQ[IntegerDigits[n], 0]&&Floor[Total[1/IntegerDigits[n]]*10^(IntegerLength[n]-IntegerLength[Floor[Total[1/IntegerDigits[n]]]])]==n&&Floor[Total[1/IntegerDigits[n]]]>0, Print[n]], {n, 1, 216666}]
PROG
(Python) See links.
(PARI) See links.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Metin Sariyar, Jun 01 2022
EXTENSIONS
a(12)-a(24) from Michael S. Branicky, Jun 03 2022
STATUS
approved