OFFSET
0,3
COMMENTS
Let A be a binary relation on [n]. Let M(A) be the unique maximal subset of [n] such that A restricted to M is nilpotent. Then a(n) is the number of relations on [n] such that M is the empty set.
EXAMPLE
a(2)=11 because all 16 binary relations on [2] have the desired property except these 5: {{0, 0}, {0, 0}}, {{0, 0}, {0, 1}}, {{0, 0}, {1, 0}},
{{0, 1}, {0, 0}}, {{1, 0}, {0, 0}}.
MATHEMATICA
nn = 12; a[p_, k_] := If[p == k, 1, Sum[(2^k - 1)^n (2^(k (p - n - k))) Binomial[p, k] a[p - k, n], {n, 1, p - k}]]; g[x_] := 1 + (Table[Sum[a[p, k], {k, 1, p}], {p, 1, nn}] Table[x^i/i!, {i, 1, nn}] // Total); h[x_] := Sum[2^(n^2) x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[h[x]/g[x], {x, 0, nn}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, May 28 2022
STATUS
approved