login
A354374
Square spiral on a 2D square lattice, one term per cell, starting at the origin with 0; the digits of the four integers forming any 2 X 2 square add up to a prime and those sums themselves form another infinite 2D square lattice with the same property.
1
0, 1, 2, 4, 3, 6, 5, 8, 11, 7, 9, 10, 12, 14, 17, 13, 15, 19, 39, 24, 16, 23, 29, 5999, 33, 18, 25, 42, 69, 699, 20, 26, 21, 999, 299, 599, 22, 28, 30, 31, 34, 38, 27, 37, 36, 40, 59, 4999, 43, 32, 35, 41, 49, 102, 47, 69999, 44, 45, 48, 99, 58, 52, 111, 689, 46, 51, 698, 79999, 9999999, 50, 68
OFFSET
1,3
COMMENTS
This is the earliest permutation of the nonnegative integers with this property.
EXAMPLE
The spiral begins:
.
16--23--29-5999-33--18
| |
24 5---8--11---7 25
| | | |
39 6 0---1 9 42
| | | | |
19 3---4---2 10 69
| | |
15--13--17--14--12 699
|
... 999--21--26--20
.
The digits of the four integers inside each of the four 2 X 2 squares that contain the initial 0 add up to a prime: 0 + 1 + 2 + 4 = 7, 0 + 4 + 3 + 6 = 13, 0 + 6 + 5 + 8 = 19, 0 + 8 + (1+1) + 1 = 11. This is true for any 2 X 2 square on the (infinite) grid; the upper right corner adds up to the prime 29, for instance: (3+3) + (1+8) + (2+5) + 7 = 29; etc.
All those successive "prime sums" form the hereunder "second-level" spiral:
.
37--19--43 ...
|
43 11--19--19--23
| | |
31 13 7--13 31
| | | |
29 19--11--19 29
| |
29--47--53--29--23
.
Though the terms of this new spiral are not distinct, the sum of the digits inside any 2 X 2 square is prime again; the upper left 2 X 2 square produces the prime 29 = (3+7) + (1+9) + (1+1) + (4+3); the lower left 2 X 2 square produces the prime 43 = (2+9) + (1+9) + (4+7) + (2+9); the lower right 2 X 2 square produces the prime 37 = (1+9) + (2+9) + (2+3) + (2+9); the initial "center square" produces the prime 23 = 7 + (1+3) + (1+9) + (1+1); etc.
KEYWORD
base,nonn
AUTHOR
Eric Angelini and Carole Dubois, May 24 2022
STATUS
approved