OFFSET
0,6
FORMULA
E.g.f.: 1/(1 + x)^(log(1 + x)^3 / 24).
a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n-1,k-1) * Stirling1(k,4) * a(n-k).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * Stirling1(n,4*k)/((-24)^k * k!).
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[-Log[1+x]^4/24], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Dec 27 2022 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-log(1+x)^4/24)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x)^(log(1+x)^3/24)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i-1, j-1)*stirling(j, 4, 1)*v[i-j+1])); v;
(PARI) a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 1)/((-24)^k*k!));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 24 2022
STATUS
approved