login
A354302
a(n) is the numerator of Sum_{k=0..n} 1 / (k!)^2.
2
1, 2, 9, 41, 1313, 5471, 1181737, 28952557, 1235309099, 150090055529, 30018011105801, 201787741322329, 523033825507476769, 44196358255381786981, 5774990812036553498851, 1949059399062336805862213, 997918412319916444601453057, 3697415655903280160125896583
OFFSET
0,2
FORMULA
Numerators of coefficients in expansion of BesselI(0,2*sqrt(x)) / (1 - x).
EXAMPLE
1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
MATHEMATICA
Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Numerator
nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, May 23 2022
STATUS
approved