login
A354227
Odd numbers whose Collatz trajectory contains exactly 12 odd numbers.
0
39, 79, 153, 157, 305, 307, 315, 317, 611, 613, 629, 631, 647, 683, 687, 1221, 1229, 1241, 1257, 1261, 1265, 1269, 1295, 1353, 1367, 1369, 1375, 1505, 2445, 2453, 2481, 2483, 2489, 2507, 2515, 2517, 2521, 2525, 2531, 2545, 2589, 2593, 2633, 2705, 2707, 2733
OFFSET
1,1
FORMULA
{ A005408 } intersect { A072122 }.
EXAMPLE
305 is a term since its Collatz trajectory is 305, 916, 458, 229, 688, 344, 172, 86, 43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.
MATHEMATICA
q[n_] := Count[NestWhileList[If[OddQ[#], 3 # + 1, #/2] &, n, # > 1 &], _?OddQ] == 12; Select[Range[1, 2750, 2], q] (* Amiram Eldar, May 20 2022 *)
CROSSREFS
Sequence in context: A355852 A290815 A355857 * A063335 A020264 A044177
KEYWORD
nonn
AUTHOR
STATUS
approved