login
A354175
Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + tan(x).
6
1, 0, 2, -8, 56, -256, 3184, -36224, 273920, -2845696, 48104704, -676312064, 10591523840, -149454094336, 2888557717504, -72214957359104, 1249919350046720, -23620669488234496, 624022403933077504, -15637185047733469184, 372737701735949926400, -9655667879651150135296
OFFSET
1,3
FORMULA
E.g.f.: Sum_{k>=1} A067856(k) * log(1 + tan(x^k)) / k.
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[c[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; c[n_] := c[n] = 2^(n + 1) (2^(n + 1) - 1) Abs[BernoulliB[n + 1]]/((n + 1) n!) - b[n, n - 1]; a[n_] := n! c[n]; Table[a[n], {n, 1, 22}]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, May 18 2022
STATUS
approved