login
Let M_p = 2^p-1 be a Mersenne prime, where p is an odd prime. Sequence lists p such that b_{p-2} == -2^((p+1)/2) mod M_p, where {b_k} is defined in the Comments.
1

%I #48 Jun 13 2022 03:02:33

%S 7,17,19,89,107,521,607,1279,2281,3217,4423,9689,11213,21701,44497,

%T 216091,859433,1257787,24036583,30402457,32582657,42643801,57885161,

%U 74207281,82589933

%N Let M_p = 2^p-1 be a Mersenne prime, where p is an odd prime. Sequence lists p such that b_{p-2} == -2^((p+1)/2) mod M_p, where {b_k} is defined in the Comments.

%C Let M_p = 2^p-1 (not necessarily a prime) where p is an odd prime, and define b_1 = 4; b_k = b_{k-1}^2 - 2 (mod M_p) for k >= 2.

%C The Lucas-Lehmer theorem says that M_p is a prime iff b_{p-1} == 0 (mod M_p).

%C Furthermore, if M_p is a prime, then b_{p-2} is congruent to +- 2^((p+1)/2) (mod M_p).

%C This partitions the Mersenne prime exponents A000043 into two classes, listed here and in A354167.

%D J. B. Cosgrave, A Mersenne-Wieferich Odyssey, Manuscript, May 2022. See Section 16.1.

%H Mersenneforum, <a href="https://mersenneforum.org/showpost.php?p=502204&amp;postcount=39">data for all known Mersenne penultimate residues (up to M#51)</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test#Sign_of_penultimate_term">Lucas-Lehmer primality test. Sign of penultimate term</a>

%Y Cf. A000043, A000668, A354167.

%Y Cf. A123271 (sign of the penultimate term of the Lucas-Lehmer sequence).

%K nonn,more

%O 1,1

%A _N. J. A. Sloane_, Jun 02 2022, based on Section 16.1 of Cosgrave (2022).

%E Thanks to _Chai Wah Wu_ for several corrections. - _N. J. A. Sloane_, Jun 02 2022

%E a(16) from _Chai Wah Wu_, Jun 03 2022

%E a(17)-a(18) from _Chai Wah Wu_, Jun 04 2022

%E a(19)-a(25) from _Serge Batalov_, _Jun 11 2022