login
Expansion of e.g.f. 1/(1 - log(1 + x)^3/6).
3

%I #10 May 18 2022 13:12:44

%S 1,0,0,1,-6,35,-205,1204,-6692,29084,17160,-3069924,61356724,

%T -959574408,13499619224,-174983776176,2029529618080,-18417948918640,

%U 36189097244720,4235753092128480,-157628320980720480,4166967770825777280,-95152715945973322560

%N Expansion of e.g.f. 1/(1 - log(1 + x)^3/6).

%F a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * Stirling1(k,3) * a(n-k).

%F a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling1(n,3*k)/6^k.

%o (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+x)^3/6)))

%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 3, 1)*v[i-j+1])); v;

%o (PARI) a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 1)/6^k);

%Y Cf. A006252, A354135.

%Y Cf. A346894, A346922.

%K sign

%O 0,5

%A _Seiichi Manyama_, May 18 2022