login
A354089
Sum of divisors function applied to Pythagorean prime shift: a(n) = sigma(A348746(n)).
4
1, 4, 6, 13, 14, 24, 8, 40, 31, 56, 12, 78, 18, 32, 84, 121, 30, 124, 20, 182, 48, 48, 24, 240, 183, 72, 156, 104, 38, 336, 32, 364, 72, 120, 112, 403, 42, 80, 108, 560, 54, 192, 44, 156, 434, 96, 48, 726, 57, 732, 180, 234, 62, 624, 168, 320, 120, 152, 60, 1092, 74, 128, 248, 1093, 252, 288, 68, 390, 144, 448, 72
OFFSET
1,2
FORMULA
Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = A348744(A000720(p)).
a(n) = A000203(A348746(n)).
a(n) = Sum_{d|n} A348746(d).
PROG
(PARI)
A348746(n) = { my(f=factor(n)); for(k=1, #f~, if(2==f[k, 1], f[k, 1]=3, if(3==f[k, 1], f[k, 1]=5, if(1==(f[k, 1]%4), for(i=1+primepi(f[k, 1]), oo, if(1==(prime(i)%4), f[k, 1]=prime(i); break)))))); factorback(f); };
A354089(n) = sigma(A348746(n));
CROSSREFS
Inverse Möbius transform of A348746.
Cf. A003973, A354093 for variants.
Sequence in context: A168015 A225939 A191199 * A247787 A074165 A137821
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, May 17 2022
STATUS
approved