login
A354083
Expansion of e.g.f. (1 + log(1-x))^x.
1
1, 0, -2, -6, -16, -55, -288, -2128, -19808, -219546, -2816530, -41002236, -666782136, -11961352104, -234327748900, -4972665181170, -113552835539328, -2774993356571920, -72238332282154344, -1995222148760626392, -58268719729725843880, -1793842001139571701696
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = -Sum_{k=1..n} A052809(k) * binomial(n-1,k-1) * a(n-k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1+log(1-x))^x))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, j*sum(k=1, j-1, (k-1)!*abs(stirling(j-1, k, 1)))*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 26 2022
STATUS
approved