login
A353882
Expansion of e.g.f. 1/(1 - (x * log(1-x))^4 / 576).
5
1, 0, 0, 0, 0, 0, 0, 0, 70, 1260, 17850, 242550, 3350655, 48108060, 724403680, 11478967500, 191632761320, 3369643717440, 62346624827760, 1212116258480400, 24721764604046280, 528066880710319440, 11793526736005503720, 274937000436908714520
OFFSET
0,9
FORMULA
a(n) = n! * Sum_{k=0..floor(n/8)} (4*k)! * |Stirling1(n-4*k,4*k)|/(576^k * (n-4*k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(x*log(1-x))^4/576)))
(PARI) a(n) = n!*sum(k=0, n\8, (4*k)!*abs(stirling(n-4*k, 4*k, 1))/(576^k*(n-4*k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 09 2022
STATUS
approved