login
A353881
Expansion of e.g.f. 1/(1 + (x * log(1-x))^3 / 36).
5
1, 0, 0, 0, 0, 0, 20, 210, 1960, 18900, 194880, 2166780, 26356880, 349806600, 5029088064, 77748751080, 1284349422720, 22551300670080, 419191223208384, 8222848137607680, 169760091173740800, 3679746265902067200, 83564915096633308800, 1984162781781147770880
OFFSET
0,7
FORMULA
a(n) = n! * Sum_{k=0..floor(n/6)} (3*k)! * |Stirling1(n-3*k,3*k)|/(36^k * (n-3*k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+(x*log(1-x))^3/36)))
(PARI) a(n) = n!*sum(k=0, n\6, (3*k)!*abs(stirling(n-3*k, 3*k, 1))/(36^k*(n-3*k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 09 2022
STATUS
approved