login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k such that the Carmichael function A002322(k) divides Dedekind psi A001615(k).
3

%I #16 May 09 2022 12:01:22

%S 1,2,3,4,6,8,9,12,14,15,16,18,20,24,27,28,30,32,35,36,40,42,45,48,52,

%T 54,56,60,63,64,65,70,72,75,78,80,81,84,90,96,98,100,104,105,108,112,

%U 117,119,120,126,128,130,135,140,144,150,156,160,162,168,175,180,182,189,190,192,195,196,200,204,208,210,216

%N Numbers k such that the Carmichael function A002322(k) divides Dedekind psi A001615(k).

%C If coprime s,t are terms, then so is s*t. Also, if t is a term and prime p|t, then p*t is also a term. Squarefree terms are listed in A353869, primitive terms are listed in A353870, and their intersection forms A353871.

%H user142929, <a href="https://mathoverflow.net/q/422010">A definition related to pseudoprimes and the Dedekind psi function</a>, MathOverflow, 2022.

%t psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); Select[Range[216], Divisible[psi[#], CarmichaelLambda[#]] &] (* _Amiram Eldar_, May 09 2022 *)

%Y Cf. A002322, A001615, A353869, A353870, A353871.

%K nonn,mult

%O 1,2

%A _Max Alekseyev_, May 08 2022