login
A353848
Numbers k such that the k-th composition in standard order (row k of A066099) has all equal run-sums.
33
0, 1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 31, 32, 36, 39, 42, 46, 59, 60, 63, 64, 127, 128, 136, 138, 143, 168, 170, 175, 187, 238, 248, 250, 255, 256, 292, 316, 487, 511, 512, 528, 543, 682, 750, 955, 1008, 1023, 1024, 2047, 2048, 2080, 2084, 2090, 2111, 2184
OFFSET
0,3
COMMENTS
Every sequence can be uniquely split into non-overlapping runs, read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
FORMULA
A353849(a(n)) = 1.
EXAMPLE
The terms together with their binary expansions and corresponding compositions begin:
0: 0 ()
1: 1 (1)
2: 10 (2)
3: 11 (1,1)
4: 100 (3)
7: 111 (1,1,1)
8: 1000 (4)
10: 1010 (2,2)
11: 1011 (2,1,1)
14: 1110 (1,1,2)
15: 1111 (1,1,1,1)
16: 10000 (5)
31: 11111 (1,1,1,1,1)
32: 100000 (6)
36: 100100 (3,3)
39: 100111 (3,1,1,1)
42: 101010 (2,2,2)
46: 101110 (2,1,1,2)
59: 111011 (1,1,2,1,1)
60: 111100 (1,1,1,3)
For example:
- The 59th composition in standard order is (1,1,2,1,1), with run-sums (2,2,2), so 59 is in the sequence.
- The 2298th composition in standard order is (4,1,1,1,1,2,2), with run-sums (4,4,4), so 2298 is in the sequence.
- The 2346th composition in standard order is (3,3,2,2,2), with run-sums (6,6), so 2346 is in the sequence.
MATHEMATICA
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
Select[Range[0, 100], SameQ@@Total/@Split[stc[#]]&]
CROSSREFS
Standard compositions are listed by A066099.
For equal lengths instead of sums we have A353744, counted by A329738.
The version for partitions is A353833, counted by A304442.
These compositions are counted by A353851.
The distinct instead of equal version is A353852, counted by A353850.
The run-sums themselves are listed by A353932, with A353849 distinct terms.
A005811 counts runs in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A351014 counts distinct runs in standard compositions, firsts A351015.
A353840-A353846 pertain to partition run-sum trajectory.
A353847 represents the run-sum transformation for compositions.
A353853-A353859 pertain to composition run-sum trajectory.
A353860 counts collapsible compositions.
A353863 counts run-sum-complete partitions.
Sequence in context: A351596 A354908 A353857 * A330722 A220969 A207006
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 30 2022
STATUS
approved