login
A353830
The positions of nonzero digits in the balanced ternary expansions of n and a(n) are the same, and the k-th rightmost nonzero digit in a(n) equals the product of the k rightmost nonzero digits in n.
4
0, 1, -4, 3, 4, 11, -12, -11, -10, 9, 10, -13, 12, 13, -34, 33, 34, 35, -36, -35, 32, -33, -32, 29, -30, -29, -28, 27, 28, -31, 30, 31, 38, -39, -38, -37, 36, 37, -40, 39, 40, 101, -102, -101, -100, 99, 100, -103, 102, 103, -106, 105, 106, 107, -108, -107, 104
OFFSET
0,3
COMMENTS
This sequence can naturally be extended to negative integers; we then obtain a permutation of the integers (Z).
A number is a fixed point of this sequence iff it has no digit -1 in its balanced ternary expansion (A005836).
LINKS
FORMULA
a(3*n) = 3*a(n).
a(3*n + 1) = 3*a(n) + 1.
Sum_{k = 0..n} a(n) = 0 iff n belongs to A029858.
EXAMPLE
The first terms, in decimal and in balanced ternary, are:
n a(n) bter(n) bter(a(n))
-- ---- ------- ----------
0 0 0 0
1 1 1 1
2 -4 1T TT
3 3 10 10
4 4 11 11
5 11 1TT 11T
6 -12 1T0 TT0
7 -11 1T1 TT1
8 -10 10T T0T
9 9 100 100
10 10 101 101
11 -13 11T TTT
12 12 110 110
PROG
(PARI) a(n) = {
my (d=[], t, p=1);
while (n, d=concat(t=[0, 1, -1][1+n%3], d); n=(n-t)/3);
forstep (k=#d, 1, -1, if (d[k], d[k]=p*=d[k]));
fromdigits(d, 3);
}
CROSSREFS
See A305458, A353824, A353826, A353828 for similar sequences.
Cf. A005836 (fixed points), A029858, A153775.
Sequence in context: A094177 A249453 A244954 * A060374 A074296 A085961
KEYWORD
sign,base
AUTHOR
Rémy Sigrist, May 08 2022
STATUS
approved